Spacecraft Vibration Suppression Using Variable Structure Output Feedback Control and Smart Materials
نویسندگان
چکیده
A hybrid control scheme for vibration reduction of flexible spacecraft during rotational maneuvers is investigated by using variable structure output feedback control (VSOFC) for attitude control and smart materials for active vibration suppression. The proposed control design process is twofold: design of the attitude controller using VSOFC theory acting on the hub and design of an independent flexible vibration controller acting on the flexible part using piezoceramics as sensors and actuators to actively suppress certain flexible modes. The attitude controller, using only the attitude and angular rate measurement, consists of a linear feedback term and a discontinuous feedback term, which are designed so that the sliding surface exists and is globally reachable. With the presence of this attitude controller, an additional independent flexible control system acting on the flexible parts is designed for further vibration suppression. Using the piezoelectric materials as actuator/sensor, both single-mode vibration suppression and multimode vibration suppression are studied and compared for the different active vibration control algorithms, constant-gain negative velocity feedback (CGNVF) control, positive position feedback (PPF) control, and linear-quadratic Gaussian (LQG) control. Numerical simulations demonstrate that the proposed approach can significantly reduce the vibration of the flexible appendages and further greatly improve the precision during and after the maneuver operations. DOI: 10.1115/1.2159039
منابع مشابه
Active Vibration Suppression of a Nonlinear Flexible Spacecraft
In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...
متن کاملVibration Reduction for Flexible Spacecraft Attitude Control using PWPF Modulator and Smart Structures
This paper presents a new approach to vibration reduction of flexible spacecraft during attitude control by using Pulse Width Pulse Frequency (PWPF) Modulator for thruster firing and smart materials for active vibration suppression. The experiment was conducted on the Naval Postgraduate School (NPS) 's Flexible Spacecraft Simulator (FSS) , which consists of a central rigid body and an L-shape f...
متن کاملVibration Suppression of Smart FGM Cylindrical Shells Using Magnetostrictive Layers
In the present work, FGM shells integrated with magnetostrictive layers acting as distributed sensors and actuators are modeled to control vibration attenuation of FGM shells with simply supported boundaryconditions. To achieve a mechanism for actively control of the oscillation amplitude of the integrated structure, a negative velocity proportional feedback control law is implemented in the st...
متن کاملPii: S0094-5765(00)00163-6
This paper presents a new approach to vibration reduction of >exible spacecraft during attitude control by using pulse width pulse frequency (PWPF) modulator for thruster Cring and smart materials for active vibration suppression. The experiment was conducted on the Naval Postgraduate School (NPS)’s >exible spacecraft simulator (FSS), which consists of a central rigid body and an L-shape >exibl...
متن کاملVibration suppression analysis for laminated composite beams embedded actuating magnetostrictive layers
This paper presents the analysis of vibration control of a laminated composite beam that including magnetostrictive layers. The formulation of problem is presented based on the shear deformation beam theory. For vibration suppression, the velocity feedback control with constant gain distributed is considered. Navier's method is applied to analyze the solution of vibration suppression of laminat...
متن کامل